Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy.
نویسندگان
چکیده
Vulnerable plaques, which are responsible for most acute ischemic events, are presently invisible to x-ray angiography. Their primary morphological features include a thin or ulcerated fibrous cap, a large necrotic core, superficial foam cells, and intraplaque hemorrhage. We present evidence that multimodal spectroscopy (MMS), a novel method that combines diffuse reflectance spectroscopy (DRS), intrinsic fluorescence spectroscopy (IFS), and Raman spectroscopy (RS), can detect these markers of plaque vulnerability. To test this concept, we perform an MMS feasibility study on 17 human carotid artery specimens. Following the acquisition of spectra, each specimen is histologically evaluated. Two parameters from DRS, hemoglobin concentration and a scattering parameter, are used to detect intraplaque hemorrhage and foam cells; an IFS parameter that relates to the amount of collagen in the topmost layers of the tissue is used to detect the presence of a thin fibrous cap; and an RS parameter related to the amount of cholesterol and necrotic material is used to detect necrotic core. Taken together, these spectral parameters can generally identify the vulnerable plaques. The results indicate that MMS provides depth-sensitive and complementary morphological information about plaque composition. A prospective in vivo study will be conducted to validate these findings.
منابع مشابه
Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque.
Early detection and treatment of rupture-prone vulnerable atherosclerotic plaques is critical to reducing patient mortality associated with cardiovascular disease. The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides detailed biochemical information about tissue and can detect vulnerable plaque features: thin fibrous cap (TFC), necro...
متن کاملCoronary plaque morphology on multi-modality imagining and periprocedural myocardial infarction after percutaneous coronary intervention☆
Percutaneous coronary intervention (PCI) may be complicated by periprocedural myocardial infarction (PMI) as manifested by elevated cardiac biomarkers such as creatine kinase (CK)-MB or troponin T. The occurrence of PMI has been shown to be associated with worse short- and long-term clinical outcome. However, recent studies suggest that PMI defined by biomarker levels alone is a marker of ather...
متن کاملIn vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque.
The rupture of vulnerable atherosclerotic plaque accounts for the majority of clinically significant acute cardiovascular events. Because stability of these culprit lesions is directly related to chemical and morphological composition, Raman spectroscopy may be a useful technique for their study. Recent developments in optical fiber probe technology have allowed for the real-time in vivo Raman ...
متن کاملIntracoronary Imaging in the Detection of Vulnerable Plaques
Coronary artery disease is the result of atherosclerotic changes to the coronary arterial wall, comprising endothelial dysfunction, vascular inflammation and deposition of lipid-rich macrophage foam cells. Certain high-risk atherosclerotic plaques are vulnerable to disruption, leading to rupture, thrombosis and the clinical sequelae of acute coronary syndrome. Though recognised as the gold stan...
متن کاملIntravascular modalities for detection of vulnerable plaque: current status.
Progress in the diagnosis, treatment, and prevention of atherosclerotic coronary artery disease is dependent on a greater understanding of the mechanisms of coronary plaque progression. Autopsy studies have characterized a subgroup of high-risk, or vulnerable, plaques that result in acute coronary syndromes or sudden cardiac death. These angiographically modest plaques share certain pathologic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2006